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Abstract
Generalizing results by Bryant and Griffiths (1995 Duke Math. J. 78 531),
we completely describe local conservation laws of second-order (1 + 1)-
dimensional evolution equations up to contact equivalence. The possible
dimensions of spaces of conservation laws prove to be 0, 1, 2 and infinity.
The canonical forms of equations with respect to contact equivalence are found
for all nonzero dimensions of spaces of conservation laws.

PACS numbers: 02.20.−a, 02.30.Jr

1. Introduction

In the prominent paper [6] on conservation laws of parabolic equations, Bryant and Griffiths
investigated, in particular, conservation laws of second-order (1 + 1)-dimensional evolution
equations whose right-hand sides do not depend on t. They proved that the possible dimensions
of spaces of conservation laws for such equations are 0, 1, 2 and ∞. For each of the values
1, 2 and ∞, the equations possessing spaces of conservation laws of this dimension were
described. In particular, it was stated that if an evolution equation ut = H(x, u, ux, uxx) has
three independent conservation laws then this equation is linearizable.

The above results from [6] can easily be extended to the general class of second-order
(1 + 1)-dimensional evolution equations having the form

ut = H(t, x, u, ux, uxx), (1)

where Huxx
�= 0. Moreover, the elimination of the restriction that the right-hand sides of the

equations do not depend on t leads to an extension of the set of admissible transformations
and an improvement of the transformation properties of the class. (Namely, the class (1) is
normalized with respect to both point and contact transformations, see section 2.) This allows
us to essentially simplify the presentation and make more concise formulations.

In contrast to [6], this paper does not involve differential forms. The conventional notions
of conserved vectors and conservation laws [13] are used (see also [14, 16, 19]).
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In what follows, the symbol L denotes a fixed equation from class (1). By CL(L)

we denote the space of local conservation laws of an equation L. It can be defined as
the factor-space CV(L)/CV0(L), where CV(L) is the space of conserved vectors of L and
CV0(L) is the space of trivial conserved vectors of L. Dt and Dx are the operators of total
differentiation with respect to the variables t and x,Dt = ∂t +ut∂u +utt ∂ut

+utx∂ux
+ · · · ,Dx =

∂x + ux∂u + utx∂ut
+ uxx∂ux

+ · · · . Subscripts of functions denote differentiation with respect
to the corresponding variables.

The results of this paper can be summed up as follows:

Theorem 1. dim CL(L) ∈ {0, 1, 2,∞} for any second-order (1 + 1)-dimensional evolution
equation L. The equation L is (locally) reduced by a contact transformation

(1) to the form ut = DxĤ (t, x, u, ux), where Ĥ ux
�= 0, if and only if dim CL(L) � 1;

(2) to the form ut = D2
xȞ (t, x, u), where Ȟ u �= 0, if and only if dim CL(L) � 2;

(3) to a linear equation from class (1) if and only if dim CL(L) = ∞.

If the equation L is quasi-linear (i.e., Huxxuxx
= 0) then the contact transformation is a

prolongation of a point transformation.

2. Admissible transformations of evolution equations

It is well known [11] that any contact transformation mapping an equation from class (1) to
an equation from the same class necessarily has the form

t̃ = T (t), x̃ = X(t, x, u, ux), ũ = U(t, x, u, ux). (2)

The functions T ,X and U have to satisfy the nondegeneracy assumptions

Tt �= 0, rank

(
Xx Xu Xux

Ux Uu Uux

)
= 2 (3)

and the contact condition

(Ux + Uuux)Xux
= (Xx + Xuux)Uux

. (4)

The transformation (2) is uniquely prolonged to the derivatives ux and uxx by the formulae
ũx̃ = V (t, x, u, ux) and ũx̃x̃ = DxV/DxX, where

V = Ux + Uuux

Xx + Xuux

or V = Uux

Xux

if Xx + Xuux �= 0 or Xux
�= 0, respectively. The right-hand side of the corresponding

transformed equation is equal to

H̃ = Uu − XuV

Tt

H +
Ut − XtV

Tt

, (5)

and (Xu,Uu) �= (0, 0) in view of (3) and (4).
Moreover, each of the transformations of the form (2) maps class (1) onto itself and,

therefore, its prolongation to the arbitrary element H belongs to the contact equivalence group
G∼

c of class (1). (There are no other elements in G∼
c .) In other words, the equivalence group

G∼
c generates the whole set of contact admissible transformations in class (1), i.e., this class

is normalized with respect to contact transformations (see [15] for rigorous definitions). We
briefly formulate the results of the above consideration in the following way.

Proposition 1. Class (1) is contact-normalized. The contact equivalence group G∼
c of class

(1) is formed by the transformations (2), satisfying conditions (3) and (4) and prolonged to
the arbitrary element H by (5).
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Note that class (1) is also point-normalized. Its point equivalence group G∼
p consists of

the transformations

t̃ = T (t), x̃ = X(t, x, u), ũ = U(t, x, u),

H̃ = �

TtDxX
H +

UtDxX − XtDxU

TtDxX
, (6)

where T ,X and U run through the corresponding sets of smooth functions satisfying the
nondegeneracy assumptions Tt �= 0 and � = XxUu − XuUx �= 0.

There exist subclasses of class (1) whose sets of contact admissible transformations in
fact are exhausted by point transformations.

Proposition 2. Any contact transformation between quasi-linear equations of the form (1) is
a prolongation of a point transformation.

3. Auxiliary statements on conservation laws

Lemma 1. Any conservation law of a second-order (1 + 1)-dimensional evolution equation
L contains a conserved vector (F,G) with the components F = F(t, x, u, ux) and
G = −Fux

H + G1, where G1 = G1(t, x, u, ux).

Proof. Let (F,G) ∈ CV(L) and ord(F,G) = r . In view of the equation L and its differential
consequences, up to the equivalence of conserved vectors, we can assume that F and G depend
only on t, x and uk = ∂ku/∂xk, k = 0, . . . , r ′, where r ′ � 2r . Suppose that r ′ > 2. We
expand the total derivatives in the defining relation (DtF + DxG)|L = 0 for conserved vectors
and take into account differential consequences of L having the form utj = D

j
xH , where

utj = ∂j+1u/∂t∂xk, j = 0, . . . , r ′. Then we split the obtained condition

Ft + Fuj
Dj

xH + Gx + Guj
uj+1 = 0 (7)

with respect to the highest derivatives appearing in it. (Here the summation convention over
repeated indices is used.) Thus, the coefficients of ur ′+2 and ur ′+1 give the equations Fur′ = 0
and Gur′ + Hu2Fur′−1

= 0 implying

F = F̂ , G = −SF̂ur′−1
ur ′ + Ĝ,

where F̂ and Ĝ are functions of t, x, u, u1, . . . , ur ′−1. After selecting the terms containing
u2

r ′ , we additionally obtain F̂ur′−1ur′−1
= 0, i.e., F̂ = F̌ 1ur ′−1 + F̌ 0, where F̌ 1 and F̌ 0 depend at

most on t, x, u, u1, . . . , ur ′−2. Consider the conserved vector with the density F̃ = F − Dx�

and the flux G̃ = G + Dt�, where � = ∫
F̌ 1 dur ′−2. It is equivalent to the initial one, and

F̃ = F̃ (t, x, u, u1, . . . , ur ′−2), G̃ = G̃(t, x, u, u1, . . . , ur ′−1).

Iterating the above procedure the necessary number of times results in a conserved vector
equivalent to (F,G) and depending only on t, x, u, u1 and u2. Therefore, we can assume at
once that r ′ � 2. Then the coefficients of u4 and u3 in (7) give the equations Fu2 = 0 and
Gu2 + Hu2Fu = 0 which imply the claim. �

Note 1. Similar results are known for arbitrary (1 + 1)-dimensional evolution equations of
even order [7]. In particular, any conservation law of such an equation of order r = 2r̄ , r̄ ∈ N,
contains the conserved vector (F,G), where F and G depend only on t, x and derivatives of u
with respect to x, and the maximal order of derivatives in F is not greater than r̄ . In the proof of
lemma 1, we deliberately used the direct method based on the definition of conserved vectors
to demonstrate its effectiveness in quite general cases. This proof can easily be extended to
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other classes of (1 + 1)-dimensional evolution equations of even orders and some systems
related to evolution equations [14].

Corollary 1. Any nonzero conservation law of L is of order 1.

Proof. In view of lemma 1, any conservation law of L contains a conserved vector (F,G)

with the components F = F(t, x, u, ux) and G = −Fux
ut + G1, where G1 = G1(t, x, u, ux).

(Fux
,G1

ux
) �= (0, 0) since otherwise condition (7) would imply that Fu = G1

u = 0 and,
therefore, (F,G) would be a trivial conserved vector. All trivial conserved vectors belong to
the zero conservation law. �

Below we consider only conserved vectors in the reduced form which appears in
lemma 1. For such conserved vectors, condition (7) is specified and expanded to

H(Fu − Fxux
− Fuux

ux − Fuxux
uxx) + Ft + G1

x + G1
uux + G1

ux
uxx = 0. (8)

Note 2. A conserved vector in reduced form is trivial if and only if its components depend at
most on t and x. If one of the components of a conserved vector in reduced form depends at
most on t and x then the same is true for the other component.

Lemma 2. Suppose that an equation from the class (1) possesses a nontrivial conserved vector
(F,G) in reduced form, where additionally Fuxux

= 0. Then the conserved vector (F,G) is
equivalent to a conserved vector (F̃ , G̃) with F̃ = F̃ (t, x, u) and G̃ = G̃(t, x, u, ux), where
F̃u �= 0. Moreover, in this case we have Huxxuxx

= 0.

Proof. By assumption, F = F 1ux +F 0 and G = −F 1H +G1, where F 1 = F 1(t, x, u), F 0 =
F 0(t, x, u) and G1 = G1(t, x, u, ux). We put F̃ = F − Dx� and G̃ = G + Dt�, where
� = ∫

F̌ 1 du. Then, F̃ux
= 0, G̃uxx

= 0 and (F̃ , G̃) is a conserved vector equivalent to (F,G).
F̃u �= 0 since otherwise the conserved vector (F̃ , G̃) is trivial (see note 2). Substituting (F̃ , G̃)

into condition (8) and solving it with respect to H, we obtain a linear function of ux whose
coefficients depend on t, x and u. �

Corollary 2. Any conservation law of an equation L of the form (1), where Huxxuxx
= 0,

contains a conserved vector (F,G) with F = F(t, x, u) and G = G(t, x, u, ux).

Proof. The conditions (8) and Huxxuxx
= 0 imply that the density of any conserved vector of

L in reduced form is linear with respect to ux . The claim therefore follows from lemma 2. �

Lemma 3. If an equation L of the form (1) has a nonzero conservation law then H is a
fractionally linear function in uxx .

Proof. Suppose that H is not a fractionally linear function in uxx . We fix any nontrivial
conserved vector (F,G) of L in reduced form. Such a vector exists according to lemma 1.
Splitting condition (8) with respect to uxx gives Fuxux

= 0. Then, in view of lemma 2 either
the function H is linear in uxx or the conserved vector (F,G) is trivial. This contradicts our
assumption. �

4. Reduction of conservation laws to canonical forms

Contact equivalence transformations can be used for the reduction of equations from the class
(1), which possess nonzero conservation laws, to a special form depending on the dimension
of the corresponding spaces of conservation laws. In fact, this reduction is realized via a
reduction of conservation laws.
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Lemma 4. Any pair (L,F), where L is an equation of the form (1) and F is a nonzero
conservation law of L, is G∼

c -equivalent to a pair (L̃, F̃), where L̃ is an equation of the same
form and F̃ is a conservation law of L̃ with characteristic 1.

Proof. Suppose that an equation L from class (1) has a nonzero conservation law F̃ . Any
transformation T from G∼

c maps L to an equation L̃ from the same class (1) and induces a
mapping from CL(L) to CL(L̃). Conserved vectors of L are transformed to conserved vectors
of L̃ by the formula [14, 16]

F̃ = F

DxX
, G̃ = G

Tt

+
DtX

DxX

F

Tt

.

We fix a nonzero conservation law F of L and a conserved vector (F,G) in reduced form,
belonging to F , and immediately set T = t . The components of the corresponding conserved
vector (F̃ , G̃) of the transformed equation L̃ necessarily depend at most on t̃ , x̃, ũ and ũx̃ .
The conserved vector (F̃ , G̃) is associated with the characteristic 1 if and only if there
exists a function �̃ = �̃(t̃ , x̃, ũ, ũx̃ ) such that F̃ = ũ + Dx̃�̃, i.e., in the old coordinates
Dx� + UDxX = F , where �̃(t̃ , x̃, ũ, ũx̃ ) = �(t, x, u, ux). After splitting the last equation
with respect to uxx , we obtain the system

�x + UXx + (�u + UXu)ux = F, �ux
+ UXux

= 0. (9)

This system supplemented with the contact condition (4) possesses the differential consequence
�u + UXu = Fux

. To derive it, we need to act on the first and second equations of (9) by the
operators ∂ux

and ∂x + ux∂u, respectively, and extract the second consequence from the first
one, taking into account the contact condition (4). Then system (9) also implies the equation
�x + UXx = F − uxFux

. As a result, we have the system

�x + UXx = F − uxFux
, �u + UXu = Fux

, �ux
+ UXux

= 0. (10)

Reversing these steps shows that system (10) implies (4) and (9). Therefore, the combined
system of (4) and (9) is equivalent to system (10).

To complete the proof, it is enough to check that for any function F = F(t, x, u, ux) with
(Fu, Fux

) �= (0, 0) system (10) has a solution (X,U,�) additionally satisfying the second
condition from (3).

At first we consider the case Fuxux
�= 0 and look for solutions with Xux

�= 0. The third
equation of (10) implies that �ux

�= 0 and U = −�ux
/Xux

. Then the two first equations take
the form

�x − Xx

Xux

�ux
= F − uxFux

, �u − Xu

Xux

�ux
= Fux

. (11)

The compatibility condition of (11) as an overdetermined system with respect to � is the
equation

uxFuxux
Xx + Fuxux

Xu +
(
Fx − uxFxux

− Fuux

)
Xux

= 0

with respect to X. Since Fuxux
�= 0, this equation has a solution X0 with X0

ux
�= 0. The

substitution of X0 into (11) results in a compatible system with respect to �. We take a
solution �0 of this system and put U 0 = −�0

ux

/
X0

ux
. The chosen tuple (X0, U 0,�0) satisfies

system (10). The nondegeneracy condition (3) is also satisfied. Indeed, suppose this was not
the case. Then U = �(t,X) for some function � of two arguments and system (9) implies
the equality

F = �x + �Xx + (�u + �Xu)ux +
(
�ux

+ �Xux

)
uxx = Dx(� +

∫
� dX),

i.e., (F,G) is a trivial conserved vector. This contradicts the initial assumption on (F,G).

5
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If Fuxux
= 0, in view of lemma 2 we can assume without loss of generality that Fux

= 0.
Then Fu �= 0. (Otherwise (F,G) is a trivial conserved vector, see note 2.) It is obvious that
the tuple (X,U,�) = (x, F, 0) satisfies (10) and the second condition from (3). �

Corollary 3. Any pair (L,F), where L is a quasi-linear equation of the form (1) and F
is a nonzero conservation law of L, is G∼

p -equivalent to a pair (L̃, F̃), where L̃ is also a
quasi-linear equation of form (1) and F̃ is a conservation law of L̃ with characteristic 1.

Proof. In view of corollary 2, any conservation law of a quasi-linear equation of the form (1)
possesses a conserved vector (F,G) with F = F(t, x, u). Then the result follows from the
proof of lemma 4 for the case Fux

= 0. �

Corollary 4. dim CL(L) � 1 if and only if the equation L is (locally) reduced by a contact
transformation to the form ut = DxĤ (t, x, u, ux), where Ĥ ux

�= 0. The equation L is quasi-
linear if and only if the contact transformation is a prolongation of a point transformation.

Proof. Suppose that dim CL(L) � 1. We fix a nonzero conservation law F of L. In view
of lemma 4 the pair (L,F) is reduced by a contact transformation T to a pair (L̃, F̃), where
the equation L̃ has the form ũt̃ = H̃ (t̃ , x̃, ũ, ũx̃ , ũx̃x̃ ) and F̃ is its conservation law with the
characteristic 1. If the equation L is quasi-linear then the transformation T is a prolongation
of a point transformation (see corollary 4). That F̃ has characteristic 1 means that the equality
Dt̃F̃ + Dx̃G̃ = ũt̃ − H̃ is satisfied for a conserved vector (F̃ , G̃) from F̃ . Therefore, up to a
summand being a null divergence we have F̃ = ũ and H̃ = −Dx̃G̃. To complete the proof, it
is sufficient to put Ĥ = −G̃.

Conversely, let the equation L be (locally) reduced by a contact transformation T to the
equation ũt̃ = Dx̃Ĥ (t̃, x̃, ũ, ũx̃ ), where Ĥ ũx̃

�= 0. The transformed equation ũt̃ = Dx̃Ĥ

has at least one nonzero conservation law. This is the conservation law F̃ possessing the
characteristic 1. The pre-image of F̃ with respect to T is a nonzero conservation law of L,
i.e., dim CL(L) � 1. If T is a point transformation then the equation L has to be quasi-linear
as the pre-image of the quasi-linear equation ũt̃ = Dx̃Ĥ with respect to this transformation.

�

Note 3. Any conservation law of the equation ut = DxĤ (t, x, u, ux) contains a conserved
vector (F,G), where F = F(t, x, u) and G = −FuĤ + G0 with G0 = G0(t, x, u). In this
case, condition (8) takes the form Ft − (Fxu + Fuuux)Ĥ + G0

x + G0
uux = 0.

In particular, if additionally Fxu = Fuu = 0 then condition (8) implies the equations
G0

u = 0 and Ft + G0
x = 0 and, therefore, Ftu = 0. As a result, we have F = cu + F 0(t, x)

for some constant c and some function F 0 = F 0(t, x). This means that the conserved
vector (F,G) under the additional restrictions belongs to a conservation law which is linearly
dependent with the conservation law possessing the characteristic 1.

Due to the above consideration, we can conclude that the space of conservation laws
of the equation ut = DxĤ (t, x, u, ux) is one dimensional if the right-hand side Ĥ is not a
fractionally linear function in ux .

Lemma 5. Any triple (L,F1,F2), where L is an equation of the form (1) and F1 and F2

are linearly independent conservation laws of L, is G∼
c -equivalent to a triple (L̃, F̃1, F̃2),

where L̃ is an equation of the same form and F̃1 and F̃2 are conservation laws of L̃ with the
characteristics 1 and x̃.

Proof. Let the equation L possess two linearly independent conservation laws F1 and F2. We
fix a conserved vector (F 1,G1) in reduced form, belonging to F1. In view of lemma 4, up

6
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to G∼
c -equivalence we can assume that F 1 = u. Then lemma 2 implies that Huxxuxx

= 0 and,
therefore, the conservation lawF2 contains a conserved vector (F 2,G2) with F 2 = F 2(t, x, u)

and G2 = G2(t, x, u, ux).

We will show that there exists a point equivalence transformation of the form (6) with
T (t) = t such that the images (F̃ 1, G̃1) and (F̃ 2, G̃2) of the conserved vectors (F 1,G1) and
(F 2,G2) are equivalent to the conserved vectors whose densities coincide with ũ and x̃ũ,
respectively. In other words, the conserved vectors should be transformed in such a way that
F̃ 1 = ũ + Dx̃� and F̃ 2 = x̃ũ + Dx̃� for some functions � = �(t, x, u) and � = �(t, x, u).
In the old coordinates, the conditions on F̃ 1 and F̃ 2 take the form Dx� + UDxX = u and
Dx� + XUDxX = F 2 and are split with respect to ux to the systems

�x + UXx = u,

�u + UXu = 0
and

�x + XUXx = F 2,

�u + XUXu = 0.

After excluding � and � from these systems by cross differentiation, we derive the conditions
XxUu − XuUx = 1 and X = F 2

u . (F 2
xu, F

2
uu) �= (0, 0) since otherwise the conservation laws

F1 and F2 would be linearly dependent (see note 3). Therefore, for the value X = F 2
u we have

(Xx,Xu) �= (0, 0). This guarantees the existence of a function U = U(t, x, u) satisfying the
equation XxUu − XuUx = 1. It is obvious that the chosen functions X and U are functionally
independent. For these X and U the above systems are compatible with respect to � and �.

�

Corollary 5. Any triple (L,F1,F2), where L is a quasi-linear equation of form (1) and
F1 and F2 are linearly independent conservation laws of L, is G∼

p -equivalent to a triple
(L̃, F̃1, F̃2), where L̃ is a quasi-linear equation of form (1) and F̃1 and F̃2 are conservation
laws of L̃ with the characteristics 1 and x̃.

Proof. If the equation L is quasi-linear, G∼
c -equivalence used in the beginning of the proof of

lemma 5 can be replaced by G∼
p -equivalence (see corollary 3). �

Corollary 6. dim CL(L) � 2 if and only if the equation L is (locally) reduced by a contact
transformation to the form ut = D2

xȞ (t, x, u), where Ĥ u �= 0. The equation L is quasi-linear
if and only if the contact transformation is a prolongation of a point transformation.

Proof. In view of lemma 5, up to contact equivalence we can assume that the equation L has
the conservation laws F1 and F2 possessing the characteristics 1 and x, respectively. (Here,
contact equivalence can be replaced by point equivalence if the equation L is quasi-linear, see
corollary 5.) Then there exist conserved vectors (F 1,G1) ∈ F1 and (F 2,G2) ∈ F2 such that

DtF
1 + DxG

1 = ut − H, DtF
2 + DxG

2 = x(ut − H).

Up to the equivalence of conserved vectors, generated by adding zero divergences, we have
F 1 = u and F 2 = xu. Hence, DxG

1 = −H and DxG
2 = −xH . Combining these equalities,

we obtain that G1 = −Dx(G
2 − xG1), i.e., H = D2

x(G
2 − xG1). As a result, we may

represent the equation L in the form ut = D2
xȞ (t, x, u), where Ȟ = G2 − xG1.

Conversely, let the equation L be reduced by a contact transformation T to the equation
ũt̃ = D2

x̃ Ȟ (t̃ , x̃, ũ), where Ĥ ũ �= 0. The transformed equation ũt̃ = D2
x̃ Ȟ has at least

two linearly independent conservation laws, e.g., the conservation laws possessing the
characteristics 1 and x, respectively. Their pre-images under T are linearly independent
conservation laws of L, i.e., dim CL(L) � 2. If T is a point transformation then the equation
L has to be quasi-linear as the pre-image of the quasi-linear equation ũt̃ = D2

x̃ Ȟ with respect
to this transformation. �

7
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Lemma 6. dim CL(L) � 3 if and only if the equation L is (locally) reduced by a contact
transformation to a linear equation from class (1). The equation L is quasi-linear if and only
if the contact transformation is a prolongation of a point transformation.

Proof. Let dim CL(L) � 3. In view of corollary 6, the equation L can be assumed, up
to G∼

c -equivalence, to have the representation ut = D2
xȞ (t, x, u), where Ĥ u �= 0. Here,

G∼
p -equivalence can be used instead of G∼

c -equivalence if L is a quasi-linear equation. Then
condition (8) implies that each conservation law of L contains a conserved vector (F,G),
where F = F(t, x, u) and G = −FuĤ + G0 with G0 = G0(t, x, u) (cf note 3). Additionally,
the functions F and G0 have to satisfy the equations

Fuu = 0, FuȞ xu − FxuȞ u + G0
u = 0, Ft + FuȞ xx + G0

x = 0.

The first equation gives that, up to the equivalence of conserved vectors, generated by adding
zero divergences, F = f u with some function f = f (t, x). Exclusion of G0 from the other
equations by cross differentiation leads to the condition ft + fxxȞ u = 0. If we would have
Ȟ uu �= 0, this condition would imply ft = fxx = 0, i.e., f ∈ 〈1, x〉. In other words, any
conservation law of L would be a linear combination of the conservation laws possessing the
characteristics 1 and x if Ȟ uu �= 0. Therefore, since dim CL(L) � 3, the case Ȟ uu �= 0 is
impossible. The condition Ȟ uu = 0 is equivalent to the equation ut = D2

xȞ (t, x, u) being
linear.

Conversely, suppose that the equation L is reduced by a contact transformation T to a
linear equation L̃ from class (1). The space of conservation laws of any linear equation (with
sufficiently smooth coefficients) is infinite dimensional. Therefore, the space CL(L) is infinite
dimensional as the pre-image of the infinite dimensional space CL(L̃) with respect to the
one-to-one mapping from CL(L) onto CL(L̃), generated by T . If T is a point transformation
then the equation L has to be quasi-linear as the pre-image of the linear equation L̃ with respect
to this transformation. �

5. Examples

Conservation laws of different subclasses of class (1) were classified in a number of papers
(see, e.g., [6, 8, 14, 16] and the references therein). All known results perfectly agree with
theorem 1.

Thus, both local and potential conservation laws of nonlinear diffusion–convection
equations of the general form

ut = (A(u)ux)x + B(u)ux, (12)

where A = A(u) and B = B(u) are arbitrary smooth functions of u and A(u) �= 0, were
exhaustively investigated in [14]. The point equivalence group G∼ of the class (12) is formed
by the transformations

t̃ = ε4t + ε1, x̃ = ε5x + ε7t + ε2, ũ = ε6u + ε3, Ã = ε−1
4 ε2

5A, B̃ = ε−1
4 ε5B − ε7,

where ε1, . . . , ε7 are arbitrary constants, ε4ε5ε6 �= 0. Any equation from class (12) possesses
the conservation law F0 whose density, flux and characteristic are

F0 = F0(A,B): F = u, G = −Aux − B̆, λ = 1.

A complete list of G∼-inequivalent equations (12) having additional (i.e., linearly independent
of F0) conservation laws is exhausted by the following ones:

B = 0, F1 = F1(A): F = xu, G = Ă − xAux, λ = x;
B = A, F2 = F2(A): F = exu, G = −exAux, λ = ex;
A = 1, B = 0,F3

h : F = hu, G = hxu − hux, λ = h,

8
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where Ă = ∫
A(u) du, B̆ = ∫

B(u) du and h = h(t, x) runs through the set of solutions of the
backward linear heat equation ht + hxx = 0. (Along with constrains for A and B the above
table also contains complete lists of densities, fluxes and characteristics of the additional
conservation laws.) Therefore, all possible nonzero dimensions of spaces of conservation
laws of evolution equations are realized in the class (12). Moreover, excluding one case, the
equations listed above are already represented in the corresponding canonical forms which are
described in theorem 1. To reduce an equation from class (12) with B = A to the canonical
form of evolution equations possessing two linearly independent conservation laws (item
(2) of theorem 1), according to the proof of lemma 5, we have to apply the transformation
t̃ = t, x̃ = ex and ũ = e−xu. The transformed equation ũt̃ = D2

x̃ Ă(x̃ũ) does not belong to the
class (12) but is represented in the canonical form.

More generally, suppose that an evolution equation has two linearly independent
conservation laws whose characteristics λ1 and λ2 depend at most on t and x. Then
a transformation reducing this equation to the canonical form is t̃ = t, x̃ = λ2/λ1 and
ũ = λ1u/(λ2/λ1)x . This gives a simple way for finding the corresponding transformations,
e.g., in the class of variable coefficient diffusion–convection equations of the form f (x)ut =
(g(x)A(u)ux)x +h(x)B(u)ux . The local conservation laws of such equations were investigated
in [8].

As nontrivial examples on case 3 of theorem 1, we consider the linearizable equations L1:
ut = ux

−2uxx and L2: ut = −uxx
−1. They are the first- and second-level potential equations of

the remarkable diffusion equation ut = (u−2ux)x and are reduced to the linear heat equation
ũt̃ = ũx̃x̃ by the (point) hodograph transformation t̃ = t, x̃ = u and ũ = x and the (contact)
Legendre transformation t̃ = t, x̃ = ux and ũ = xux − u, respectively. The spaces CL(L1)

and CL(L2) are infinite dimensional. The space CL(L1) consists of the conservation laws
with the conserved vectors (F,G) = (

σ, σωu−1
x

)
and the characteristics λ = σω, where

ω = u. The space CL(L2) is formed by the conservation laws with the conserved vectors
(F,G) = (

σ, σωu−1
xx

)
and the characteristics λ = σtuxx , where ω = ux . In both the cases,

the parameter-function σ = σ(t, ω) runs through the solution set of the backward linear heat
equation σt + σωω = 0.

The unified representations of equations possessing conservation laws are important for
a successful study of the potential frame (potential systems, potential conservation laws and
potential symmetries) for the class (12), confer also the discussion in the next section.

6. Conclusion

In this paper, we have presented the classification of conservation laws of general second-order
(1+1)-dimensional evolution equations. The classification list is very compact. In addition to
the odd order and the evolution structure of the equations under consideration, the simplicity
of the classification result is explained by the normalization of the class of these equations
with respect to contact transformations. (The class considered in [6] is not normalized.)

The classification of local conservation laws leads to the complete description of first-level
potential systems of evolution equations. The contact equivalence group G∼

c of the class (1)
generates an equivalence relation on the corresponding set of potential systems [14, 16]. Up
to this equivalence relation and the equivalence of conserved vectors, the first-level potential
systems of those equations nonlinearizable by contact transformations are exhausted by the
systems

vx = u, vt = Ĥ , (13)

9
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where Ĥ = Ĥ (t, x, u, ux) and Ĥ ux
�= 0, and

v1
x = u, v1

t = DxȞ , v2
x = xu, v2

t = xDxȞ − Ȟ , (14)

where Ȟ = Ȟ (t, x, u) and Ȟ u �= 0.
Each system of the form (13) is constructed with a single conserved vector in reduced

form, associated with the characteristic 1. The corresponding potential equation is vt =
Ĥ (t, x, vx, vxx).

Each system of the form (14) is constructed with a pair of conserved vectors in reduced
form, associated with the characteristics 1 and x. It can formally be represented as the
second-level potential system

v1
x = u, wx = v1, wt = Ȟ (t, x, u), (15)

where w = xv1 −v2. The equation v1
t = DxȞ is a differential consequence of the second and

third equations of (15) and can be omitted from the canonical representation. The potential
equation associated with (15) is wt = Ĥ (t, x,wxx). In spite of formally belonging to the
second level of potential systems, the representation (15) has a number of advantages in
comparison with the representation (14).

An exhaustive study of the potential frame for linear second-order (1+1)-dimensional
evolution equations, including potential systems, potential conservation laws, usual and
generalized potential symmetries of all levels, was presented in [16].

The Lie symmetries of the first-level potential systems (13) and (14) are the first-level
potential symmetries of equations from the class (1). System (14) can be replaced by system
(15) since these systems are point equivalent. To investigate Lie symmetries of (13) and (15),
results of [11] (resp. [1, 4, 10]) on the classification of contact (resp. Lie) symmetries of
equations from the class (1) with respect to the corresponding contact (resp. point) equivalence
group can be used. The simplest case of this strategy was discussed in [18].

The iterative application of the procedure of finding conservation laws to potential systems
together with the subsequent construction of potential systems of the next level gives a
description of universal Abelian coverings [5] (or extensions by conservation laws in the
terminology of [6]). See also [9, 12] for a definition of Abelian coverings and [17] for a
discussion of universal Abelian coverings of evolution equations. As a next step we will
complete the study of universal Abelian coverings for equations from the class (1), using the
equivalence relation generated by the contact equivalence group and other techniques. These
results will form the subject of a forthcoming paper.
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